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Abstract. In this paper we study certain general properties of
primitive and O-primitive idempotents, and the obtained results we ap-
ply to O-inversive, 0-B-inversive, E-inversive and B-inversive semigroups.
We also determine some conditions under which a left ideal of a semi-
group with zero a generated by a nonzero idempotent is left 0-simple.
The obtained results generalize some results by Venkatesan, Steinfeld,
Bogdanovi¢ and Mili¢, Bogdanovié and Ciri¢, Mitsch and Petrich and
others.

1. Introduction and preliminaries

An idempotent a of a semigroup S is called primitive if it is minimal in
the set E(S) of all idempotents of S with respect to the natural paxtial order
on idempotents, i.e. if for every f € FE(S), f = ef = fe implies f = e. But,
theory of primitive idempotents for a semigroup with zero is trivial, and from
this reason we define the concept of primitivity only for semigroups without
zero. If S is a semigroup with zero 0, then we define a nonzero idempotent a of
S to be 0-primitive if it is minimal in the set E*(.S) of all nonzero idempotents
of S, ie. if e € E*(S) and for every f € E*(S), by f = ef = fe it follows
f=e

The concepts of primitivity and O-primitivity play an outstanding role
in theory of semigroups. For example, they are used to define completely
simple and completely O-simple semigroups. Semigroups without zero all of
whose idempotents are primitive, called primitive semigroups, and semigroups
with zero all of whose nonzero idempotents are 0-primitive, called O-primitave
semigroups, have been a subject of interest of many authors. Primitive regu-
lar semigroups are exactly completely simple ones, whereas 0-primitive regu-
lar semigroups were characterized as orthogonal sums of completely 0-simple
semigroups, by Venkatesan in [21] and Steinfeld in [17].
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These semigroups have been also studied by Hall in [9], Lallement and
Petrich in [14], Preston in [16], and more information about it can be found in
the books by Clifford and Preston [8], Steinfeld [18], Bogdanovi¢ and Cirié [5]
and Howie [12]. Primitive w-regular semigroups were characterized by Bog-
danovié¢ and Mili¢ in [3] as nil-extensions of completely simple semigroups, and
O-primitive m-regular semigroups were described by Bogdanovié and Cirié in
[4] as certain extensions of O-primitive regular semigroups.

The main our aim is to give certain general properties of primitive
and O-primitive idempotents and to describe primitive and 0-primitive semi-
groups in some classes more general than the class of w-regular semigroups,
such as E-inversive, B-inversive, 0-inversive and O-B-inversive semigroups. On
the other hand, it is known that the primitivity and 0-primitivity of idem-
potents are closely related to the minimality and 0-minimality of twosided,
onesided and bi-ideals of a semigroup, and we study this relationship, too.
For example, we determine some necessary and sufficient conditions for a left
ideal of a semigroup with zero generated by a nonzero idempotent to be a
left 0-simple semigroup. The obtained results generalize the above mentioned
results of Venkatesan, Steinfeld, Bogdanovié and Mili¢, Bogdanovié¢ and Cirié,
Lallement and Petrich [14] and others, as well as the results of Mitsch and
Petrich, announced in [15], concerning O-primitive O-inversive and primitive
E-inversive semigroups.

Throughout the paper, Reg(S) and E(S) denote the set of all regular
elements and the set of all idempotents of a semigroup .S, respectively, whereas
S = S means that S is a semigroup with zero 0. A semigroup S is called
unipotent if it has a single idempotent, wheras a semigroup S = S° with
a single nonzero idempotent is called 0-unipotent. A subsemigroup K of a
semigroup S is called full if E(S) C K. Let a semigroup S = S° be given. Then
E*(S) = E(S)\{0}, and if K is a subset of S, then Ag(K) = {a € S|aK =
Ka = {0}}, A4(K) = {a € S|aK = {0}} and AG(K) = {a € S|Ka = {0}}.
If S\{0} is a group (left group, union of groups), then S is said to be a group
(left group, union of groups) with zero.

For undefined notions and notations we refer to the books by Clifford
and Preston [7] and [8]], Steinfeld [18], Bogdanovi¢ [1], Howie [12] and Bog-
danovi¢ and Cirié [5].

In the further work we need the following known results.

Lemma 1. [18] Let a be a nonzero idempotent of a semigroup S = S°.
Then Se is a 0-minimal left ideal of S if and only if a is O-primitive and
Se C Reg(S).

Lemma 2. [7] If L is a 0-minimal left ideal of a semigroup S = S°
such that L? # {0}, then L = Sa, for any a € L\{0}.



Primitive idempotents in semigroups 9

Lemma 3. [7] If S = S° is a left 0-simple semigroup, then S\{0} is a
left simple subsemigroup of S.
Lemma 4. [2] Let S be a semigroup without zero. Then the following
conditions are equivalent:
(i) there exists e € E(S) such that eSe is a group;
(ii) there ezists e € E(S) such that Se is a left group;
(iii) there exists e € E(S) such that €S is a right group;
(iii) S has a completely simple kernel.

2. The results

The first theorem of this paper characterizes O-primitive idempotents
of a semigroup with zero.

Theorem 1. Let e be a nonzero idempotent of a semigroup S = SO.
Then the following conditions are equivalent:
(i) e is 0-primitive;
(ii) eSe is 0-unipotent;
(i) (Vf € E*(Se))ef =¢;
(iv) E*(Se) is a left zero band;
(v) (Vf € E*(eS))fe=c¢;
(vi) E*(eS) is a right zero band.
Proof. (i)=(ii). Let e be a 0-primitive idempotent of S and let f €
E*(eSe). Then 0 # f =ef = fe, whence f = e. Thus eSe is O-unipotent.
(i1)=(i). Let f € E*(S) such that f = ef = fe. Then f € eSe and
since eSe is 0-unipotent, then we have that f = e. Hence, e is O-primitive.
(ii)=-(iii). Let f € E*(Se). Then f = fe, whence ef = efe € eSe. By
this and the hypothesis it follows that (ef)? = ef € {0,e}. If ef = 0, then
f = f?=(fe)f = f(ef) = 0, which is not possible. Therefore, ef = e.
(iii))=(i). Let f € E*(S) such that f = ef = fe. Then f € E*(Se),
whence ef = e, i.e. f = e. Therefore, we have proved that e is O-primitive.
(iii)=(iv). Let f, g € E*(Se). Then f = fe and by the hypothesis we
have that fg = (fe)g = fleg) = fe=[.
(iv)=>(iii). This implication is evident.
The remaining equivalences can be proved in a similar manner. 0O
As a consequence of the previous theorem we obtain the following result
concerning primitive idempotents of a semigroup without zero.

Corollary 1. Let e be an idempotent of a semigroup S without zero.
Then the following conditions are equivalent:
(1) e is primitive;
(il) eSe is a unipotent monoid;
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(i) E(Se) is a left zero band;
(iv) E(eS) is a right zero band.
A semigroup S is called E-inversive if for every a € S there exists z € S
such that az = (az)?. These semigroups were introduced by Thierrin in [19]
and they have been considered by a number of authors as a generalization of
regular, 7-regular!) and many other important kinds of semigroups. But, any
semigroup with zero is E-inversive, so in this case is interesting to consider
another related concept. Namely, a semigroup S = S9 is called 0-inversive if
for every a € S\{0} there exists € S such that az = (ax)? # 0. This concept
was first studied by Lallement in [13] and Lallement and Petrich in {14], and
since by many other authors. Let us note that the definitions of E-inversive
and O-inversive semigroups are self-dual. In other words, a semigroup S is E-
inversive if and only if for every a € S there exists y € S such that ya = (ya)?,
or equivalently, if for every a € S there exists 2 € S such that z = zaz (see
[6]). Similarly, a semigroup S = S° is O-inversive if for every a € S\{0} there
exists y € S such that ya = (ya)? # 0, or equivalently, if for every a € S\ {0}
there exists z € S such that z = zaz # 0.
We characterize 0-inversive semigroups by the following theorem.

Theorem 2. The following conditions on a semigroup S = S° are
equivalent:
(i) S is O-inversive;
(ii) every nonzero ideal of S contains a nonzero idempotent;
(iii) every nonzero deft (right) ideal of S contains a nonzero idempotent.
Proof. (i)=(ii) and (i)=-(iii). Let S be 0-inversive and let a € S\{0}.
Then there exists z € S such that az € R(a) C J(a) and ax = (az)? # 0.
Thus every nonzero right and every nonzero twosided ideal of S have a nonzero
idempotent. Similarly we prove that every nonzero left ideal of S has a nonzero
idempotent.
(iii)=-(ii). This implication is evident.
(i)=(i). Let a € S\{0}. Then J(a) # {0} and there exists an idempo-
tent e # 0 such that e € J(a). This means that there exist z, y € S such that
e = zay # 0, whence zay = (zay)? # 0. Set u = yzayz. We have that

0 # zay = (zay)® = za(yzayz)ay = zauay,
whence u # 0. Since
uau = (yzayz)a(yzayz) = yrayr = u # 0,
we then have that au € E*(S). Therefore, S is 0-inversive. O

UNote that a semigroup S is called m-regular if for any element of S, some its power is
regular.
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Note that the conditions (ii) and (iii) of the previous theorem can be
replaced by the corresponding conditions concerning principal left, right and
twosided ideals.

As we noted before, the O-primitivity of an idempotent is closely re-
lated to the O0-minimality of left and right ideals generated by it. Namely, the
following is true.

Lemma 5. If a is a nonzero idempotent of a semigroup S = S° such
that the left ideal Se(right ideal eS) of S generated by a as 0-minimal, then e
s a O-primitive idempotent.

Proof. For a proof see Lemma 6.38 of [8].

The converse of the previous lemma is not true, as the next example

shows.
Example 1. Let S be a semigroup given by the following presentation:

S=<a,e,0|a2=0, e?=e, ae=0, ea=a, Oa=a0=e0=0e=0°=0>.

Then e is a O-primitive idempotent of S, but eS = S, so eS is not a
0-minimal right ideal of S.

This example motivates us to give the following definition. A nonzero
idempotent e of a semigroup S = S° which generates a 0-minimal left (right)
ideal is called left (right) completely 0-primitive, and e is completely 0-primi-
tive if it is both left and right completely O-primitive. A semigroup S = S°
is called (left, right) completely 0-primitive if all of its nonzero idempotents
are (left, right) completely 0-primitive. By the following theorem we describe
0-primitive idempotents of 0-inversive semigroups.

Theorem 3. Let S = SO be a 0-inversive semigroup and let e € E*(S).

Then the following conditions are equivalent:
(i) e is 0-primitive;

(i) Se is a 0-minimal left ideal;

(iil) eS is a 0-minimal right ideal;

(iv) eSe is a group with zero.

Proof. We shall prove only the equivalence (i) <=> (ii). Let e be a
O-primitive idempotent and let a € Se, a # 0. Then a = ae. On the other
hand, there exists y € S such that y # 0 and ya = (ya)? # 0. It is clear
that ya € Sa = Sae C Se. Since ya # 0, we have that ya € E*(Se). By
(iii) of Theorem 1 we have that eya = e. Now a = ae = a(eya) = a(ey)a,
so a € Reg(S). Thus, Se C Reg(S) and by Lemma 1 we have that Se is a
0-minimal left ideal of S.

The converse is an immediate consequence of Lemma 5. O

Next we characterize O-inversive semigroups having 0-primitive idem-
potents.
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Theorem 4. Let S = S° be a 0-inversive semigroup. Then the follow-

ing conditions are equivalent:

(i) S has a 0-primitive idempotent;

(ii) S has a 0-primitive regular left ideal;
(iii) S has a 0-primitive regqular right ideal.

Proof. We shall prove only the equivalence (i) <> (ii).

Let e be a O-primitive idempotent of S. Then by Theorem 3, Se is a
0-minimal Ieft ideal of S. Let P be the set of all 0-primitive idempotents of S
and let L = Ueep(Se). Since Se = See C Le C Se, we have that L = UeepLe.
Now by Theorem 6.39 of (8] it follows that L is a 0-primitive regular Left ideal
of S.

The converse is evident. ad

By the previous two theorems we obtain the following one.

Theorem 5. Let S = S° be a 0-inversive semigroup. Then the follow-
ing conditions are equivalent:
(i) S is 0-primitive;
(ii) eSe is a group with zero, for any e € E*(S);
(iii) S has a full O0-primitive regular ideal;
(iv) S has a full 0-primitive regular left (right) ideal;
(v) S is completely 0-prirraitive.
Proof. (i)=(iii). By Theorem 3 it follows that Se is a O-minimal left
ideal of S and eS is a 0-minimal right ideal of S, for every e € E*(S). On the
other hand, according to Lemma 1 we have that

L= U Se C Reg(S) and R = U eS C Reg(S).
e€E*(S) ecE*(S)

Since every E*(S) is O-primitive, we then have that Reg(S) C LNR. Therefore,
Reg(S) = L = R is a O-primitive regular ideal of S.

(i) <= (ii) & (v). This follows by Theorem 3.

(i) <= (iv). This is a consequence of Theorem 4.

(iif) <= (i). This implication is clear. o

As a consequence of the previous theorem we obtain the structural
characterization of O-primitive O-inversive semigroups announced by Mitsch
and Petrich in [15]. ‘

Corollary 2. A semigroup S = S° is a 0-primitive 0-inversive semi-
group if and only if it is an ideal extension of a 0-primitive regular semigroup
K by a semigroup without nonzero idempotents and As(K) = {0}.

Note that the condition Ag(K) = {0} can be replaced by the conditions
Ag(K) = {0} and A5(K) = {0}.
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We introduce a special kind of 0-inversive semigroups as follows. A
semigroup S = S0 is O-B-inversive if for every a € S\{0} there exists z € S
such that aza = (aza)? # 0. Clearly, every O-B-inversive semigroup is 0-
inversive. It is easy to verify that the five element Brandt semigroup B; is
O-inversive and that this semigroup is not O-B-inversive.

The following theorem gives a characterization of O-B-inversive semi-
groups.

Theorem 6. The following conditions on a semigroup S = S
equivalent:

(i) S is O-B-inversive;
(i) every nonzero left (right) ideal of S is 0-inversive;
(iii) every nonzero bi-ideal of S contains a nonzero idempotent.

Proof. (i)=(ii). Let L be a nonzero left ideal of S and let a € L\{0}.
Then there exists z € S such that aza = (axa)? # 0, and hence 0 # aza €
Sa C L. Therefore, by Theorem 2 we have that S is O-inversive.

(i1)=(i). Let a € S\{0}. Then there exists y € L(a) such that ay =
(ay)? # 0. Since y = a or y = sa, for some s € S\{0}, we have that aa =
(aa)? # 0, or asa = (asa)? # 0. Thus S is O-B-inversive.

(i)=(iii) . This is evident.

(iii)=(i). Let @ € S\{0}. By the hypothesis, the principal bi-ideal
B(a) = {a,a®} U aSa generated by a has a nonzero idempotent e, and we
have that e = a or e = a2 or e = aza, for some z € S. By this it follows that
0#e=a®=0abor0#e=a*=dad or 0+#e=azra=(azxa)?. Therefore, S is
O-B-inversive. a

Note that the conditions (ii) and (iii) of the previous theorem can be
replaced by the corresponding conditions concerning only the principal left,
right and bi-~ideals.

A very interesting property of O-B-inversive semigroups is presented by
the following lemma.

0 are

Lemma 6. If a semigroup S = S° is O-B-inversive, then a® # 0, for
any a € S\{0}.

Proof. Let a € S\{0}. If a® = 0, then (aza)? = 0 for each z € S, which
is not possible because S is O-B-inversive. Thus a2 # 0 for any a € S\{0}. O

The previous lemma yields the following one.

Lemma 7. The following conditions on a semigroup S = S° are equiv-
alent:
(i) S is completely 0-simple and O-B-inversive;
(ii) S is completely 0-simple and a? # 0 for each a € S\{0};
(ili) S is 0-simple and a union of groups;
(iv) S is a completely simple semigroup with zero.
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Proof. (i)=(ii). This follows by Lemma 6.

(i)=(iii). This follows by Theorem 2.52 of [7].

(iii)=>(iv) and (iv)=(i). These implications are obvious. a

Now we are able to characterize 0-primitive O-B-inversive semigroups.

Theorem 7. Let S = S° be a O-B-inversive semigroup. Then S is 0-
primitive if and only if S has a full O-primitive ideal which is a union of
groups with zero.

Proof. This follows immediately by Theorem 5 and Lemma 7. O

By the previous theorems concerning O-inversive semigroups we can
deduce the corresponding results concerning E-inversive semigroups without
zero. Namely, the following theorem, proved by Higgins in [11]is true.

Theorem 8. Let S be a semigroup without zero. Then the following
conditions are equivalent:
(i) S is E-inversive;
(i1) every ideal of S has an idempotent;
(iii) every left (right) ideal of S has an idempotent.

A semigroup S without zero is B-inversive if for every a € S there exists
z € S such that aza = (aza)?, [1]. These semigroups can be characterized as
follows.

Theorem 9. Let S be a semigroup without zero. Then the following
conditions are equivalent:

(i) S is B-inversive;
(i) every left (right) ideal of S is an E-inversive subsemigroup of S;
(iii) every bi-ideal of S contains an idempotent.

The proof of the above theorem is similar to the proof of Theorem 6
and it will be omitted.

The conditions of the previous two theorems can be replaced by the
correspondimg conditions concerning principal twosided, left, right and biide-
als.

Now we are ready to characterize primitive E-inversive and B-inversive
semigroups. -

Theorem 10. Let S be a semigroup without zero. There the fodlowirg
corcditious are equivalent:

(i) S is E-inversive and primitive;

(i1) S is B-tuversive and primitive;
(1) S is E-inversive and eSe is a group, for each e € E(S);
(iv) S has a full completely simple kernel.

Proof. (1)=(iii). Let S be an E-inversive primitive semigroup, let e €
E(S) and a € eSe. Then a = ea = ae and there exists y € Ssuch that
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ay = (ay)? and ya = (ya)?. Then aey = (aey)?, whence aey = aeyeaey and
finally aeye = (aeye)?. Similarly we obtain that eyea = (eyea)?. By Theorem
2, eSe is unipotent and we have that eyea = aeye = e. Therefore, eSe is a
group. :

(iii)=(iv). This follows by Lemma 4.

(iv)=>(ii). Let K be a full completely simple kernel of S, let a € S and
b € K. Then aba € K and aba = abayaba, abay = yaba, for some y € K. By
this it follows that abay?aba = (abay®aba)?; so S is B-inversive. Since K is
full, we have that S is primitive.

(ii)=(i): This implication is evident. O

As a consequence we obtain the following structural characterization of
primitive E-inversive semigroups due to Mitsch and Petrich [15].

Corollary 3. A semigroup S without zero is a primitive E-inversive
semigroup if and only if it is are ideal extension of a completely simple semi-
group K by a semigroup without nonzero idempotents.

In the further text we consider an interesting problem which concerns
0-minimal left ideals of a semigroup. Namely, it is well-known that if an ideal
I of a semigroup S = S is 0-minimal, then either I? = {0} or else I is a
0-simple semigroup. But, left ideals do not have such property, as was shown
by the following example.

Example 2. Let S be a semigroup given by the following table:

0 e f abd
0/]0 0 0 0 O
e|0 e 0 a O
f10 0 f 0 b
al0 0 a 0 e
b0 b 0 f O

Then Se = {0, e,b} is a 0-minimal left ideal and (Se)? # {0}, but it is
not a left O-simple semigroup, because {0, b} is a left ideal of Se.

Our next goal is to determine certain conditions under which a left ideal
of a semigroup S = S° generated by a nonzero idempotent a is left O-simple. It
is clear that such left ideal must be O-minimal, which is by Lemma 1 equivalent
to the condition that a is O-primitive and Se C Reg(S). The latest condition
means that any element from Se is regular in S, but in the general case, it
is not necessarily regular in Se. This confirms the element b from Example 2
which is regular in S but not in Se. We shall see that the regularity in Se,
i.e. the condition Se = Reg(Se) is crucial in the further work.

Theorem 11. Let e be a nonzero idempotent of a semigroup S = S°.
Then the followang conditions are equivalent:
(1) Se is left 0-simple;
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(ii) Se is a left group with zero;

(iii) e is O-primitive and Se = Reg(Se);

(iv) Se is a 0-minimal left ideal of S and Se = Reg(Se);
(v) eSe is a group with zero and Se = Reg(Se);

(vi) E*(Se) is a left zero and and Se = Reg(Se);

(vii) eSe as 0-unipotent and Se = Reg(Se).

Proof. (i) <= (ii). The implication (i)=>(ii) is evident, whereas- the
implication (ii)=-(i) is an immediate consequence of Theorem 1.27 of [7].

(ii)=(iv). Let Se be a left group with zero. Then it is clear that Se is
a O-minimal left ideal of S. Since Se\{0} is a left group, we have that both
Se\{0} and Se are regular semigroups, that is Se = Reg(Se).

(iv)=>(iil). This follows immediately by Lemma 5.

(iii)=>(i). Let (iii) hold. Then it is clear that (Se)? # {0}, and by Lemma,
1 it follows that Se is a 0-minimal left ideal of S. By Lemma 2 we have that
Se = Sa, for every a € Se\{0}, whereas by Se = Reg(Se) it follows that
a = ae and a € a(Se)a, so Se = Sa C S(aSea) C Sea C Seae C Se, which
means that Se = Sea, for every a € Se\{0}. Therefore, Se is a left O-simple
semigroup.

(iif)=>(v). Let (iii) hold. By (iii) <= (i) and eSe C Se it follows that
eSe\{0} is a subsemigroup of Se\{0}. Let a € eSe\{0}. Then ae = ea = q,
and by eSe C Se = Reg(Se) it follows that a = aza, for some z € S. Now
we obtain that a(eze)a = (ae)z(ea) = aza = a and exe € eSe\{0}, so we
conclude that eSe\{0} is a regular semigroup. Finally, by Theorem 1 it follows
that eSe\{0} has only one idempotent, which means that eSe\{0} is a group,
i.e. eSe is a group with zero.

(v)=>(vii). This implication is obvious.

(iii) <= (vi) and (iii) <= (vii). These equivalence are immediate con-
sequences of Theorem 1. a

The next theorem describes 0-minimal left ideals which are generated
by nonzero idempotents.

Theorem 12. The following conditions on a nonzero left ideal L of a
seraigroup S = SO are equivalent:

(i) L is a 0-minimal left ideal of S and L C Reg(S);
(i) E*(L) is a left zero band and L C Reg(S);
(iii) L is a 0-minimal left ideal of S generated by a nonzero idempotent.

Proof. (i)=(iii). Let (i) hold and let a € L\{0}. By the hypothesis L C
Reg(S) it follows that there exists z € S such that a = aza and za € E*(L).
On the other hand, Sza C SL C L, i.e. Sza is a left ideal of S contained in
L, and since L is a O-minimal left ideal of S, then Sza = L, which is to be
proved.
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(iii)=(ii). Let L be 0-minimal and let L = Se, for some e € E*(L). By
Lemma 1, e is O-primitive and L C Reg(S), and finally, by Theorem 1, E*(L)
is a left zero band.

(ii)=(i). Let (ii) hold and let K be a nonzero left ideal of S contained
in L. Then K C Reg(S), so for any a € K\{0} there exists z € S such that
a = aza, and then za € SK C K| i.e. za € E*(K) C E*(L). It is clear that
LK C SK C K, so we have that K is a lefi ideal of L. Consider an arbitrary
b € L\{0}. Then b € Reg(S), i.e. b = byb, for some y € S. By this it follows
that yb € E*(L). Using the hypothesis that E(L) is a left zero band we obtain
that yb = yb- za, whence b = byb = b - yb- xa € Sxa C K. Therefore, we have
proved that L = K, so we conclude that L is a 0-minimal left ideal of S. O

Finally, as a consequence of two previous theorem we obtain the follow-
ing result.

Theorem 13. The following conditions on a left ideal L of a semigroup
S = SO are equivalent:

(1) L is a 0-minimal left ideal of S and L = Reg(L);
(i) E*(L) is a left zero band and L = Reg(L);
(iii) L s a left group with zero;
(iv) L is a left 0-simple and has a nonzero idempotent.

Proof. (i) <= (ii). This is an immediate consequence of Theorem 12.

(i)=(iii). Let L be O-minimal and L = Reg(L). By Theorem 12, L = Se
for some e € E*(L), and by Theorem 11 we have that L is a left group with
z€ro.

(iii)=>(ii) and (iii)=(iv). These implications are evident.

(iv)=>(iil). This follows by Lemma 3 and Theorem 1.27 of [7). O
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